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Abstract—The time-domain surface impedance boundary con-
ditions allow to accurately account for the high-frequency flux
components while removing the massive conducting regions from
the computation domain. In this paper, a coarse volume finite-
element discretization of the conductors together with a fictitious
frequency-dependent conductivity are added to capture the slow
varying flux components. This hybrid approach extends thus the
frequency range of these impedance conditions. A 2-D test case
illustrates the method.

I. INTRODUCTION

Surface-impedance boundary conditions (SIBCs) are widely
applied in frequency-domain eddy-current problems for re-
moving the massive conducting regions from the computa-
tional domain and greatly reducing the computational cost. A
necessary condition is that at the considered frequency the skin
depth is sufficiently small compared to the depth or curvature
of the conducting region. The higher the frequency, the better
the SIBC approximation is.

Up to date, few time-domain extensions have been pro-
posed [1], [2], [3]. In [3], the authors presented a time-domain
approach based on the spatial distribution of a 1-D eddy-
current problem by means of dedicated basis functions derived
from the analytical frequency-domain solution. The method is
developed for dual magnetodynamic formulations with both
linear and nonlinear materials. However, the slow varying flux
components are not properly considered.

In this paper, the frequency range of this time-domain SIBC
technique is extended down to DC by introducing a coarse
volume FE discretisation of the massive conducting region
and a fictitious frequency-dependent conductivity. Preliminary
results for a basic 1-D geometry were presented in [4]. The
hybrid methodology is herein further developed and validated
on a 2-D application.

II. 1-D EDDY-CURRENT IN SEMI-INFINITE SLAB

Let us consider a magnetodynamic problem in a semi-
infinite slab Ωm (0 ≤ x ≤ ∞), with the flux density b(x, t)
parallel to the z-axis. For linear and isotropic media, the
conductivity σ and the permeability µ (reluctivity ν = 1/µ)
are constant scalars. This 1-D problem is governed by [3]:

∂2
xa(x, t) = σµ∂ta(x, t) , (1)

with a(x, t) the y−component of the magnetic vector potential
a (b = curl a) and boundary condition a(x =∞, t) = 0.
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Using complex notation (symbols in bold, imaginary unit
ı =
√
−1), the sinusoidal steady-state solution of (1) at fre-

quency f (skin depth δ =
√

1/(µσπf)) leads to the heart of
the classical frequency-domain SIBC approach:

∂xa
∣∣∣
x=0

= −(δZ)−1 a(x = 0) . (2)

that relates the tangential components of the electric and
magnetic field at the surface of the conducting region x = 0
via the so-called complex impedance Z = 1/(1 + ı).

A. Basis functions for the low-order time-domain model
Based on the analytical solution of (1), we choose a number

of exponentially decreasing trigonometric basis functions that
cover the relevant frequency range of the application to model.
A set of n skin depths δk (frequencies fk), 1 ≤ k ≤ n,
are preset for the wished accuracy and 2n basis functions
defined [3]:
αc1(x) = e−x/δ1 cos(x/δ1),
αck(x) = e−x/δk cos(x/δk)− αc1(x), 2 ≤ k ≤ n,
αsk(x) = e−x/δk sin(x/δk), 1 ≤ k ≤ n.

B. Hybrid SIBC–FE approach
Let us consider a non-magnetic massive conducting 1-D re-

gion Ωm with boundary Γm, depth L = 100 mm (0 ≤ x ≤ L)
and σ = 60 MS/m, which is uniformly meshed, either coarsely
(∆x = 5 mm, coarse FE solution) or finely (∆x = 0.125 mm,
reference FE solution). Supposing δ � L and disregarding the
phase error, in Fig. 1 we compare the different approaches via
the normalised impedance Zn =

√
2 ·abs(Z) (Z in (2)). Note

that Zn equals 1 if no discretisation error is made.
The SIBC with discrete frequencies f1 = 1e2, f2 = 1e3

and f3 = 1e4 (Hz) shows a very good accuracy in the interval
[f1, f3], i.e. Zn close to 1, with some overshoot on both sides.
The coarse FE presents a good agreement till f1 = 1e2.
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Fig. 1. Normalised impedance Zn versus frequency

The hybrid approach consists in combining the SIBC tech-
nique with a coarse volume FE mesh of the massive con-
ducting region for allowing slowly varying flux components.
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With that purpose, we can introduce two fictitious frequency-
dependent conductivities to force Zn to drop quicker to zero
on the left side of the interval [f1, f3]. We adopt σv for the
coarse FE and σs for the SIBCs:

σv = σ
(

1 +
∑

k=1,2,...

(f/ck)2k
)

in Ωm, (3)

σs = σ
(

1 +
∑

k=1,2,...

(c′k/f)2k
)

on Γm , (4)

with c1, c2, . . ., c′1, c
′
2, . . . properly chosen coeffients by e.g. a

fitting algorithm. For the sake of simplicity, we do not consider
polynomial expansions with odd powers that would amount to
complex values.

The cut-off correction curves in Fig. 1 (coarse FE+σv ,
SIBC+σs) are obtained with the optimised values c1 =
12.4, c2 = 9.1, c3 = 9.2 and c′1 = 9.4, c′2 = 10.5, c′3 = 9.4.
Given these two contributions in parallel at Γm, we get the
Zn for the hybrid approach (Fig. 1): between 0 and 1e4 Hz an
excellent agreement with the reference FE solution observed.
The two conductivities optimised in 1-D for a given frequency
range are thus to be integrated in a higher dimensional model.

III. INTEGRATION IN FE MODEL

With our time-domain SIBC approach the volume integrals
in Ωm, appearing in the weak form of Ampère law (curlh =
j), are reduced to the following surface integrals [3]:

(ν curl a, curl a′)Ωm = 〈at, a′t〉Γm · ν
∫ ∞

0

∂xp ∂xp
′ dx , (5)

(σ ∂ta, a
′)Ωm = 〈∂tat, a′t〉Γm · σ

∫ ∞
0

p p′ dx , (6)

with at the magnetic vector potential tangential to Γm. We
take αck(x), αsk(x) for the space discretisation of p and p′.

The coupling between the SIBC and the coarse volume FE
method is done by imposing at Γm that the flux outside the
massive conducting region equals the flux inside plus the SIBC
component, i.e. the two fluxes are considered in parallel. In
practice, this condition is directly applied to a via an additional
equation at Γm.

When applying the hybrid SIBC–FE approach in Ωm, the
volume integral (6) reads:

(σ∂ta, a
′)Ωm

= (σv∂ta, a
′)Ωm

+ 〈∂tat, a′t〉Γm
· σs
∫ ∞

0

p p′ dx ,

(7)
The fictitious conductivities σv,s, (3) and (4), can be straight-
forwardly expressed in the time domain by considering the
relation between fk and ∂kt , i.e.

σv∂ta = σ
(
∂ta+

∑
k=1,2,...

(−1/2πck)2k∂2k
t a
)

in Ωm, (8)

σs∂tat = σ
(
∂tat +

∑
k=1,2,...

(−2πc′k)2k∂−2k
t at

)
on Γm , (9)

where ∂−2k
t denotes 2k-th integrations in time.

IV. APPLICATION EXAMPLE

The 2-D application example concerns a non-magnetic
conducting cylinder (radius R = 20 cm; σ = 60 MS/m)
inside an inductor. The classical FE model with a very fine

discretisation of the cylinder near its surface provides an
accurate reference solution. When applying the SIBC, only the
mesh outside the cylinder is effectively considered. The hybrid
approach requires an additional coarse volume discretisation
(Fig. 2 left). All the approaches have been first been compared
in the frequency-domain with an imposed sinusoidal current
at frequency ranging from 1e-2 to 1e5 Hz. We adopt a low
order approximation of the SIBC with f1 = 1e2, f2 = 1e3
and f3 = 1e4 Hz. We adopt a low order approximation of the
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Fig. 2. Flux pattern at 100 Hz, fine and coarse FE mesh (left). Real and
imaginary part of normalised inductance versus frequency (right)

SIBC with f1 = 1e2, f2 = 1e3 and f3 = 1e4 Hz. The real and
imaginary part of the inductance of the source (normalised by
its value at 0 Hz) is shown in Fig. 2 right. The hybrid approach
proves accurate when the SIBC and the coarse FE are not.

Then, a sinusoidal current at 100 Hz with a DC component
is imposed. A period of the flux linkage of the inductor is
shown in Fig. 3 for the reference FE model, the SIBC and
hybrid approaches. While the SIBC is not able to capture
the DC component, the hybrid approach is. An excellent
agreement with the reference FE solution is observed.
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Fig. 3. Normalised magnetic flux versus time

Further results and details on the method will be given in
the extended paper.
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